Skip to main content

Dynamic Agents

Learn how to create agents with dynamic system prompts that update automatically using real time data.


Dynamic System Prompts

Agents support dynamic system prompts that can include live data through template functions. These functions are executed each time the agent runs, providing fresh context.

Use {module::function} syntax to embed dynamic values:

agent = Agent(
name="dynamic_agent",
model="openai/gpt-4o-mini",
system_prompt="""You are a time-aware assistant.
Current time: {datetime::datetime.now}."""
)

The previous example used a built-in function (datetime). You can also create your own custom functions:

# my_functions.py
def get_server_status():
"""Get server status."""
status = check_server() # Calls external function
return f"Server: {status}"
agent = Agent(
name="custom_agent",
model="openai/gpt-4o-mini",
system_prompt="""You are a helpful assistant.
Status: {my_functions::get_server_status}."""
)

You can also pass dynamic parameters to these functions using RunContext data that you previously set in the context.

# my_functions.py
from timbal.core import Tool, Agent
from timbal.state import get_run_context
def get_user_language():
return get_run_context().get_data(".input.language")
def set_user_language(l):
context = get_run_context().set_data("user_lang", "catalan")
agent = Agent(
name="multilang_agent",
model="openai/gpt-4o-mini",
pre_hook=set_user_language,
system_prompt="Answer in {my_functions::get_user_language}"."
# )
await agent(prompt="Which is the capital of Germany?").collect()

The response will be in Catalan.

Benefits:

Real-time context

System prompts reflect current state

Dynamic behavior

Agent adapts to changing conditions

Automatic execution

Functions run on each conversation

Performance

Template resolution is fast and cached

Sync/Async

Handles both sync and async functions automatically.